TAGS:-rgpv mathematics - 2 papers i rgpv m-2 previous year papers i rgpv m-2 model papers i rgpv m-2 guess papers i download rgpv last year papers i rgpv m-2 old papers i rgpv RGPV M-2 PREVIOUS YEAR GUESSING PAPERS I RGPV M-2 MODEL PAPERS I RGPV M-2 LAST FIVE YEAR PAPERS I RGPV PAPERS I RGTU PREVIOUS YEAR M-2 PAPERS I RGPV MATHEMATICS -II PAPER
BE-202
B.E. (First /Second Semester)
EXAMINATION, June-2010
(Common for all Branches )
ENGINERRING MATHEMATICS-II
(BE-202)
Time : Three Hours Maximum Marks : 100 Minimum Marks : 35
Note : Attempt all questions. All question carry equal marks,
One full question should be solved at one place.
Q.1. (a) Prove that : ∞ 10
x² = π² / 3 + 4 ∑ (-1)n Cos nx / n² , -π < x < π
n =1
and hence show that :
∑ 1/ n² = π² / 6
(b) Applying convolution theorem find the inverse transform of S² / (S²+ a²)² 10
Or
(a) If f(x) = πx , -2 < x < 0 10 =π(2-x) , 0 < x < π
Show that in the interval ( 0, 2 )
f(x) = π / 2 -4 / π [Cos πx / 1² + Cos 3πx / 3² + Cos 5πx / 5² +........]
(b) Find the Laplace transform of : 10
(i) t² Cosat
(ii) (Cosat - Cosbt) / t
----------------------------------------------------------------------------------------------------------------------------------
Q.2. (a) Obtain the series solution of the equation : 10
4x d²y / d²x + 2(1-x) dy / dx - y = 0
(b) Solve by the method of variation of parameters : 10
(D² + 1 ) y = x sin x
Or
(a) Prove that : 10
Pn(x) = ( 1 / 2n ∟n ) dn / d xn (x²-1)n
(b) Solve : 10
d²y / d²x - 2 tan x dy / dx + 5 y = ex Sec x
-----------------------------------------------------------------------------------------------------------------------------------
Q.3. (a) Solve : 10
( x² - y² - z²) p + 2xy q = 2xz
(b) Solve : 10
d^2z / dy^2 - d^2z / dx.dy = Sinx Cos2y
Or
(a) Solve : 10
z = px + qy +(1+ P^2 + Q^2)½
(b) Using the method of separation of variables , solve 10
du / dx = 2 du / dt + u , where u(x, 0) = 6 e^ (-3x)
------------------------------------------------------------------------------------------------------------------------------------
Q. 4 (a) If ---->
R = xi +yj +zk , prove that 10
(i) div (r^n R) = (n+3) r^n
(ii) Curl
(r^n R) = 0
(b) Using Divergence theorem to evaluate : 10
Where F = x^3i + y63 j + z^3 k and S is the surface of the sphere x^2 +y^2 = a^2
Or
(a) Find the directional derivatives of f = xy^2 + yz^3 at the point (2,-1,1) in the direction of vector i +2j+2k. 10
(b) Show that the vector field given by : 10
F= (x^2-yz)i + 9y^2-zx) + (z^2-xy)k
is irrotational and find the scalar potentioal.
---------------------------------------------------------------------------------------------------------------------------------------
Q.5 (a) Compute by Fisher's index formula the quality index from the data given below : 10
Artical | Price | Total Value | Price | Total Value |
A | 12 | 36 | 10 | 40 |
B | 10 | 16 | 8 | 96 |
C | 16 | 96 | 14 | 9 |
x | y |
1.0 | 1.1 |
1.5 | 1.3 |
2.0 | 1.6 |
2.5 | 2.0 |
3.0 | 2.7 |
3.5 | 3.4 |
4.0 | 4.1 |
Or
(a) Find the mean and variance of bionomial Distribution ? 10
(b) Fit a Poission distribution to the following : 10
x | y |
0 | 46 |
1 | 38 |
2 | 22 |
3 | 9 |
4 | 1 |
0 comments